a2 United States Patent

Bono et al.

US009485310B1

US 9,485,310 B1
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) MULTI-CORE STORAGE PROCESSOR
ASSIGNING OTHER CORES TO PROCESS
REQUESTS OF CORE-AFFINED STREAMS

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventors: Jean-Pierre Bono, Westborough, MA
(US); John Forecast, Newton, MA
(US); Mukesh Gupta, Shrewsbury, MA
(US); Frederic Corniquet, L.e Pecq
(FR); Philippe Armangau, Acton, MA
(US)

Assignee: EMC IP Holding Company LLC,
Hopkinton, MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 114 days.

Appl. No.: 14/580,865

Filed: Dec. 23, 2014

Int. C1.

GO6F 15/16 (2006.01)

HO4L 29/08 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC ... HO4L 67/1097 (2013.01); GO6F 17/30197

(2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

5,872,972 A 2/1999 Boland et al.
2008/0084865 Al* 4/2008 Archer HO4L 45/42
370/351
2008/0084889 Al* 4/2008 Archer HO4L 45/00
370/400
2014/0310418 Al* 10/2014 Sorenson, III HO4L 67/1002
709/226
2015/0134797 Al* 5/2015 Theimer HO4L 41/24
709/223

2015/0186180 Al 7/2015 Schroth et al.
2015/0280959 Al* 10/2015 Vincent HO4L 67/1097

709/203

* cited by examiner

Primary Examiner — Krisna Lim
(74) Attorney, Agent, or Firm — BainwoodHuang

(57) ABSTRACT

A multi-core processor of a network attached storage system
processes requests from host computers for services of a file
system service. Each core maintains endpoints of respective
connection-layer connections to the hosts to affine respective
streams of network traffic with the core, and dynamically
and preferentially assigns execution threads of the core to
process file system service requests of the streams affined
with the core. Each core also co-operates with the other
cores to dynamically and non-preferentially (a) assign
execution threads of the core to process file system service
requests of the streams affined with the other cores, and (b)
assign execution threads of the other cores to process file
system service requests of the streams affined with the core,
promoting efficient use of the cores for the processing

Field of Classification Search
CPC HO4L 67/1097; HO4L 17/30197
See application file for complete search history.

workload of the file system service.

14 Claims, 6 Drawing Sheets

110

12—~

114 —

Maintain endpoints of connection-layer connections
to the hosts to affine streams of network traffic
with the core

A

Y

Dynamically and preferentially assign execution
threads of the core to process file system service
requests of the streams affined with the core

A

A 4

Co-operate with other cores to dynamically
and non-preferentially (a) assign execution threads
of the core to process file system service requests of
the streams affined with the other cores, and (b)
assign execution threads of the other cores to
process file system service requests of the streams
affined with the core

U.S. Patent Nov. 1, 2016 Sheet 1 of 6

US 9,485,310 B1

NAS 14

A 4

Network Interface 24

A

A 4

Storage Processor 26

A

Y

DSD Interface 28

A

Y

Data Storage Devices 30

U.S. Patent Nov. 1, 2016 Sheet 2 of 6 US 9,485,310 B1

Storage Processor 26

Network 1/0 40

Processing Unit 42
Core 50 Core 50
Cache 54 Cache 54
Shared
Cache
Core 50 52 Core 50
Cache 54 Cache 54
Memory 44

DSD I/O 46

U.S. Patent

26\

Nov. 1, 2016

Connection-Layer Host Connections 60

Sheet 3 of 6

A

US 9,485,310 B1

: M
BER | | Network /O | | |
(N (| 40 1 |
Core Core Core Core
50(1) 50(2) 50(3) 50(4)
Memory 44
DSD I/0 46

U.S. Patent Nov. 1, 2016 Sheet 4 of 6 US 9,485,310 B1

70—
. F/S Service 76
Threads 78
WriteStream /
ReadStream Collector 80
App Dom 72

V

NW Dom 74

Head 84

Head 84 Head 84

W R
Streamhead 86 Streamhead 86 Streamhead 86

v 1 v i) v 1
Application 88 Application 88 Application 88

! f ! f f
RPC-TCP 90 RPC-TCP 920

v 1 v 1 v

TCP 92 TCP 92 UDP 94

U.S. Patent Nov. 1, 2016 Sheet 5 of 6

80\4

Local Threads 78

I

Controller 100

Queue 102

\)
e

Local
Streamheads 86

Fig. 5

US 9,485,310 B1

Other
Cores 50

U.S. Patent Nov. 1, 2016 Sheet 6 of 6 US 9,485,310 B1

110 —. | Maintain endpoints of connection-layer connections
to the hosts to affine streams of network traffic
with the core

A

Y

112 — | Dynamically and preferentially assign execution
threads of the core to process file system service
requests of the streams affined with the core
A

A

Co-operate with other cores to dynamically
and non-preferentially (a) assign execution threads
114 —- | of the core to process file system service requests of

the streams affined with the other cores, and (b)
assign execution threads of the other cores to
process file system service requests of the streams
affined with the core

Fig. 6

US 9,485,310 B1

1
MULTI-CORE STORAGE PROCESSOR
ASSIGNING OTHER CORES TO PROCESS
REQUESTS OF CORE-AFFINED STREAMS

BACKGROUND

The present invention is related to the field of data storage
systems providing file system services to host computers via
a network, referred to herein as “network attached storage”
systems.

A network attached storage (NAS) system may employ
one or more storage processors that execute a file system
service application and other programs to form functional
modules that collectively provide a file system service to
host computers via a network. Examples of network-pro-
vided file system services include Network File System
(NFS) and Common Internet File System (CIFS). In opera-
tion, the NAS system forms persistent network connections
with the hosts over which the hosts request file system
operations and the NAS system returns corresponding
responses. Typical file system operations include opening,
closing, reading from and writing to a file contained in a file
system on the NAS, which is treated by the host as an
extension of its file system.

SUMMARY

Like other processor-based systems, NAS systems may
employ so-called “multi-core” processors that include mul-
tiple independent instruction execution units sharing the
processing load for a single instance of an application
program that is executed to provide file system services.
Typically, the cores are realized as separate sections of a
single monolithic integrated circuit serving as a processing
unit having connections to a memory, /O circuitry, etc. In
such systems, it is necessary to divide the processing load
intelligently among the cores to obtain efficient use of
hardware resources and desirably high performance.

In a NAS system specifically, it can be desirable to
persistently associate, or affine, the network traffic of dif-
ferent hosts with respective different cores, and as a general
matter to process the file system service requests of the hosts
within the respective affined cores. Employing such core
affinity can promote high performance and efficiency by
minimizing the need for host-specific data to be transferred
among the cores, a situation that can lead to cache thrashing
and reduce performance. However, there can be situations
during operation in which the network traffic directed to a
given core exceeds the processing capability of that core,
while at the same time there may be other cores experiencing
relatively lighter loading. This represents inefficiency by
failure to fully use all available hardware resources, and can
also adversely affect performance. Maintaining strict affinity
between the hosts and cores can reinforce this inefficiency.
If at a given time certain hosts are generating significant file
system demand while other hosts are not, the cores handling
the connections to those other hosts may be relatively idle,
and the strict affinity would prevent any redistributing of the
workload for better overall utilization of the cores.

Methods and apparatus are disclosed that can improve the
efficiency and performance of multi-core processors in the
context of a NAS system, in particular efficiency and per-
formance based on the utilization of the cores. A NAS
system can use the disclosed techniques to realize a desired
balance between the benefits of host-core affinity and the
benefits of fuller utilization of the cores.

10

15

20

25

30

35

40

45

50

55

60

65

2

A method is disclosed of operating a multi-core processor
of a network attached storage system to process requests
from host computers for services of a file system service.
The method includes, at each core of a set of cores of the
multi-core processor, (1) maintaining endpoints of respec-
tive connection-layer connections to the hosts to affine
respective streams of network traffic with the core, and (2)
dynamically and preferentially assigning execution threads
of the core to process file system service requests of the
streams affined with the core. This much of the method
promotes the efficiency and performance benefits from host-
core affinity.

The method further includes (3) co-operating with the
other cores to dynamically and non-preferentially (a) assign
execution threads of the core to process file system service
requests of the streams affined with the other cores, and (b)
assign execution threads of the other cores to process file
system service requests of the streams affined with the core.
This operation is performed only under appropriate condi-
tions, such as when all local threads are busy and another
core has at least one idle thread and no overriding local
requests, so that the idle thread of the other core can be used
to process the request. While this operation effectively
reduces affinity and the benefits thereof, it enables overall
better utilization of processing resources and can provide
offsetting efficiency and performance benefits.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following description of particular
embodiments of the invention, as illustrated in the accom-
panying drawings in which like reference characters refer to
the same parts throughout the different views.

FIG. 1 is a block diagram of a distributed computer
system,

FIG. 2 is a block diagram of a storage processor from a
hardware perspective;

FIG. 3 is a functional block diagram of a multi-core
storage processor;

FIG. 4 is a schematic depiction of processing modules and
data paths in a core of a multi-core storage processor;

FIG. 5 is a block diagram of a collector module; and

FIG. 6 is a flow diagram of operation of modules of a core
of a storage processor.

DETAILED DESCRIPTION

FIG. 1 shows a distributed computer system 10 including
host computers (HOSTs) 12 and a network attached storage
system (NAS) 14 coupled to a network 16. The NAS 14
provides data storage services to the hosts 12, specifically a
file system service making storage visible to the hosts 12 as
extensions of their respective host file systems. Communi-
cations between the hosts 12 and NAS 14 employs a
distributed file system (FS) protocol over the network 16 as
generally known in the art. Known examples include the
Network File System (NFS) and Common Internet File
System (CIFS) protocols. For the present description the FS
protocol employs requests (REQ) 20 sent by the hosts 12 to
the NAS 14, and corresponding responses (RSP 22) returned
to the hosts 12 by the NAS 14. Common file system
operations and corresponding request/response pairs include
file OPEN, file CLOSE, file READ, and file WRITE. The
network 16 is typically a general-purpose network such as

US 9,485,310 B1

3

an Internet Protocol (IP) network, in contrast to a more
storage-oriented network such as a FibreChannel storage
area network (SAN).

The NAS 14 includes a network interface 24, storage
processor 26, data storage device (DSD) interface 28, and
data storage devices 30. The data storage devices 30 provide
nonvolatile read/write data storage, and may be realized as
magnetic disks, Flash memory, etc. The network interface 24
provides the physical-layer connection to the network 16,
e.g., Ethernet connectivity. The DSD interface 28 provides
connection to the data storage devices 30 via a storage-
oriented interface such as Small Computer System Interface
(SCSI) and FibreChannel. The storage processor 26 is a
high-performance processing complex that provides exten-
sive functionality in software-implemented form, including
a high-level protocol endpoint (e.g., NFS, CIFS) for the FS
protocol, functionality of the file system service, and use of
the data storage devices 30 to provide the underlying data
storage for the file system service.

FIG. 2 shows the storage processor 26 from a hardware
perspective. It includes network input/output (I/O) circuitry
40, a processing unit 42, memory 44, and DSD I/O circuitry
46. It may also include additional memory used as a storage
cache 48.

The memory 44 is the directly addressable system
memory of the processing unit 42. It is commonly realized
using high speed dynamic random access memory (DRAM)
connected to the processing unit 42 by a high speed data bus
(not shown). The network I/O circuitry 40 connects the
physical-layer network interface 24 (FIG. 1) to the memory
44 for data transfer therebetween, and similarly the DSD I/O
46 connects the DSD interface 28 to the memory 44 and/or
storage cache 48.

The processing unit 42 is of a type known as “multi-core”,
having multiple independent execution units called “cores”
50. The cores 50 have shared access to the memory 44,
typically via a large shared cache 52 and smaller respective
per-core caches 54. In operation, the cores 50 can simulta-
neously execute respective streams of instructions and
access respective data from the memory 44, under the
control of hardware and software mechanisms that manage
the use of the cores 50 for a processing workload, such as
that of the file system service as mentioned above and
described more below.

FIG. 3 shows a functional view of the storage processor
26 as it relates to use of the cores 50. In operation, com-
munications with the hosts 12 (FIG. 1) are via respective
connection-layer connections 60 carried by the network 16
and the network /O circuitry 40. The term “connection-
layer” refers to the known multi-layer representation of
network operation, and the connections 60 are logical con-
nections defined at the connection layer. In one example,
these are Transmission Control Protocol (TCP) connections.
As generally known in the art, a TCP connection is partly
defined by a pair of tuplets for respective ends of the
connection, each tuplet including an IP address, TCP pro-
tocol identifier, and TCP port number. In the storage pro-
cessor 26, the connections 60 are persistently assigned to, or
“affined” with, respective cores 50. Thus in the illustrated
example, core 50(1) has four distinct connections 60 to
respective hosts 12, core 50(2) has two such distinct con-
nections 60, etc. It will be appreciated that the connections
60 are depicted logically for ease of description, and that at
a hardware level the network traffic of the connections 60
travels through the memory 44 for processing by the respec-
tive core 50.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 depicts pertinent functional organization 70 of a
core 50, where the functions are software-implemented in
the form of modules or other functional components as
generally known in the art. The organization is divided into
two separate domains, an application domain (App Dom) 72
and a real-time or “network” domain (NW Dom) 74. In the
application domain 72 is the file system service 76 shown as
including a set of execution threads or “threads” 78, as well
as a collector module or “collector” 80. The network domain
74 includes a set of stream network stacks 82, which in the
illustrated example include two TCP-oriented stacks 82(1),
82(2) and a UDP-oriented stack 82(3), where UDP refers to
User Datagram Protocol (UDP). UDP is a connectionless
protocol and is used for control and other communications
that are outside of a specific file system service session of a
host 12 that is carried on a respective connection 60 (FIG.
3.

The stream network stacks 82 provide paths for the file
system service 76 to communicate with the hosts 12 via
network 16 using a “stream” paradigm that is distinct from
other types of network connections, notably from so-called
“socket” connections. From the perspective of the file sys-
tem service 76 including the threads 78, each stream net-
work stack 82 is a “stream” object that can be written to and
read from by the threads 78 using a stream application
programming interface (API). The stream API includes
routines such as Open_Stream, Close_Stream, Read_
Stream, and Write_Stream that operate upon a head object or
“head” 84 serving as the point of communication between
the respective stream network stack 82 and the threads 78.
In the description below, the term “stream” refers to a flow
of data items through a stream network stack 82, which
corresponds to a flow of file system requests 20 and
responses 22. Thus successive requests 20 are received from
the network 16 and processed upward in a stream network
stack 82, resulting in the information content of the requests
20 being conveyed to threads 78 in a series of Read_Stream
calls. Similarly, the threads 78 provide response information
to a stream network stack 82 using a series of Write_Stream
calls, and the response information is processed downward
in the stream network stack 82 to result in a series of
responses 22 sent across network 16 to requesting hosts 12,
i.e., each response 22 is sent to the host 12 from which the
corresponding request 20 was received.

Additional layers of a stream network stack 82 include a
streamhead module 86 and an application module 88. Ser-
vice functions may be defined if a module deals with flow
control. The TCP-oriented stream network stacks 82(1),
82(2) include a remote procedure call—TCP (RPC-TCP)
module 90 and a TCP module 92, while the UDP-oriented
stream network stack 82(3) includes a UDP module 94. In
each of the modules 86-92, stream traffic is divided into
separate read and write portions, processed separately and
independently at each layer. In the illustrated arrangement,
all three stream network stacks 82 interface to a single IP
module 96 that interfaces to the network 16 and to which the
read/write separation of stream processing also extends as
shown.

For ease of description, the data read from a head 84 that
conveys the contents of a request 20 to a thread 78 is referred
to as a “request” or a “file system service request”, and the
data written to a head 84 that conveys the contents of a
response 22 from a thread 78 is referred to as a “response”
or “file system service response”. The application module 88
and RPC-TCP module 90 translate between these internal
representations of requests and responses and the corre-
sponding protocol-compliant, or “well formed” requests 20

US 9,485,310 B1

5

and responses 22 carried by network 16. In particular, the
application module 88 is responsible for parsing the contents
of remote procedure calls in received network traffic to
identify well-formed requests 20 (e.g., NFS or CIFS
requests), and for providing these well-formed requests to
the streamhead module 86 where they are provided to
threads 78 in response to Read_Stream calls. The application
module 88 is also responsible for generating RPC callbacks
from responses written into the stream by Write_Stream
calls, and providing the callbacks to the RPC-TCP module
90 for forwarding to a host 12 across the network 16.

At a high level, the organization of FIG. 4 effects multi-
threading as well as core-affined stream processing that
promote computing efficiency. Fach core 50 includes a
number of threads 78 that can process file system service
requests 20 as received from the stream network stacks 82.
In practice the number of threads 78 is fixed over at least
short periods of operation, e.g., days to months, although the
number might be adjustable in some embodiments to enable
a system administrator to tune performance. Each core 50
also has a respective set of stream network stacks 82 as
described above, and a respective collector 80 that manages
the connections of the threads 78 to the streams of the stream
network stacks 82 as described more below. Maintaining
stream affinity helps maintain stream-specific execution
context within a given core 50. Over time as the file system
operations of a given stream are performed, respective file
system metadata migrates to the cores 50 with which the
respective streams are affined, specifically to the respective
per-core caches 54 of the cores 50. Processing efficiency is
obtained by reducing average memory latency due to
increased cache hit ratios.

There can be situations during operation in which the
network traffic directed to a given core 50 exceeds the
processing capability of that core 50, while at the same time
there may be other cores 50 experiencing relatively lighter
loading. This represents a certain inefficiency, namely fail-
ure to fully use all available hardware resources (i.e., cores
50). It will be appreciated that maintaining strict stream
affinity could reinforce this inefficiency. If at a given time
certain hosts 12 are generating significant file system
demand while other hosts 12 are not, the cores 50 handling
the connections 60 to those other hosts 12 may be relatively
idle, and strict affinity of the streams would prevent any
redistributing of the workload for better overall utilization of
the cores 50.

Thus as described more below, another function of the
collector 80 is to monitor both the availability of local
threads 78 (i.e., of the same core 50) for processing requests
20, as well as the level of demand for processing from the
local stream network stacks 82 (i.e., of the same core 50),
and provide for selectively routing file system requests and
responses among the cores 50 to make better overall utili-
zation of them. Specifically, the collector 80 of each core 50
provides for a local thread 78 to be used to process a request
from a stream network stack 82 of another core 50, and
vice-versa—for a thread 78 of another core 50 to be used to
process a request from a local stream network stack 82 of
this core 50. For this functionality the other core 50 may be
referred to as a “remote” core 50 and its requests and threads
78 as “remote” requests and threads respectively. While this
cross-core activity effectively reduces stream affinity and the
context-related efficiency that comes with it, it does so in
furtherance of another efficiency in the form of full use of
hardware resources. Those skilled in the art will appreciate
based on the present description that the disclosed tech-

15

35

40

45

55

6

niques can be implemented to achieve a desired balance
between these two forms of efficiency to best achieve overall
system goals.

FIG. 5 shows the structure of a collector 80. It includes a
control component or controller 100 and a queue 102. The
controller 100 communicates with the local threads 78 and
the queue 102, as well as with corresponding controllers 100
of respective collectors 80 of other cores 50. The queue 102
is in communication with the local streamhead modules 86
(FIG. 4). The queue 102 holds file system service requests
that have been received via a stream network stack 82 and
are either being processed by a respective thread 78 or
awaiting such processing.

Referring to both FIG. 4 and FIG. 5, once a well-formed
file system service request reaches the stream head 86 of a
respective stream network stack 82, the streamhead module
86 calls a function of the collector 80. Assuming there is at
least one thread 78 available to process the request, an entry
is added to the queue 102, and the collector 80 selects a
thread 78 for handling the request and activates or “awak-
ens” the selected thread. The selected thread 78 obtains the
next entry from the queue 102, which identifies the head 84
that the thread 78 is to read from to obtain a file system
request for processing. The thread 78 issues a Read_Stream
to the identified head 84 to obtain the file system service
request, then performs the file system processing for the
request and returns a corresponding response by issuing a
Write_Stream to the same head 84. The response travels
down the stream network stack 82 and becomes a protocol-
level response 22 to the requesting host 12. After issuing the
Write_Stream, the thread 78 becomes available to the col-
lector 80 to process another file system service request from
the queue 102.

Thus the collector 80 manages the signaling of new
requests to the file system service 76 on behalf of all the
stream network stacks 82, making the signaling simpler over
alternatives in which the threads 78 poll or otherwise engage
in signaling with the several local stream network stacks 82.

The above assumes immediate availability of a thread 78
to process a new file system request in the stream from a
given stream network stack 82. In the event that all threads
78 of the core 50 are already busy, then under some
circumstances (described more below) an entry for the new
file system service request is placed on the queue 102 to
await availability of a thread 78. Additional entries for
subsequent file system service requests might also be placed
on the queue 102. Once a thread 78 becomes available, the
collector 80 assigns the thread 78 to process a next request
as identified by the next entry on the queue 102, i.e., the top
or head of the queue. Processing then proceeds as described
above for the immediate availability situation.

Regarding the above-described local processing (in a core
50) of streams affined to that core 50, i.e., streams of the
stream network stacks 82 of the core 50, the following will
be appreciated:

1. Any idling of one or more local threads 78 reflects a
potential inefficiency in terms of underutilized
resources.

2. Any use of the queue 102 to hold requests that are
awaiting assignment of a thread 78 reflects potentially
sub-optimal performance in terms of additional request
delay and limitation of request processing throughput
of the file system service 76.

Thus the collectors 80 of the respective cores 50 have
additional functionality enabling a thread 78 of one core 50
to process requests of streams affined to another core 50.
This operation can help address both issues 1 and 2 above,
i.e., it can improve efficiency and performance over an
alternative in which streams can be processed only locally.
This additional functionality of each collector 80 includes
both the following:

US 9,485,310 B1

7

1. Monitoring the usage of the local threads 78 and signals
received from the collectors 80 of the other cores 50
regarding their availability to process requests from
other cores 50. Under appropriate conditions, e.g.,
when all local threads 78 are busy, then selectively
directing a new request from a local stream network
stack 82 to another core 50 via the respective collector
80, based on that collector 80 indicating that it can
accept a new request from another core 50. Also,
accepting a corresponding response from the other
collector 80, and directing the response to the appro-
priate local stream network stack 82.

2. Monitoring the usage of the local threads 78 as well as
the local queue 102 to identify the ability to process
requests from another core 50, and signaling the other
cores 50 regarding this ability. Under appropriate con-
ditions, i.e., when one or more local threads 78 are idle
and the queue 102 holds no requests from local stream
network stacks 82, then receiving a new request from
another core 50 via the respective collector 80 and
assigning an available local thread 78 to process the
request. When the processing is complete, routing the
response back to the requesting collector 80 for return
to the corresponding host 12 via the respective stream
network stack 82 of the other core 50.

A collector 80 monitors for availability of the local
threads 78 in the course of assigning these threads 78 for
processing requests and then being informed when the
processing is completed and a response has been returned to
the head 84 from which the request was obtained. When at
least one local thread 78 is idle, it can be assigned. The
collector 80 preferentially assigns the thread 78 to process
requests from a local stream network stack 82, if there are
any. If no local requests are waiting, the collector 80 signals
to the other collectors 80 its ability to receive a request from
one of them for processing by a local thread 78. Another
collector 80 can use this indication to direct a request to this
collector 80 if necessary, i.e., if that other collector 80 has no
local threads 78 available. This operation of directing a
request to another core is non-preferential, i.e., it is done
only if a request cannot be processed locally. Local process-
ing is preferred for the reasons discussed above, i.e., to
maintain context and relatively high hit ratio of the local
cache 54 rather than causing data to migrate to the cache 54
of another core 50 along with the request processing.

In one embodiment, a collector 80 signals its ability to
accept a request from another core 50 when there are no new
local requests in the local queue 102 and there is at least one
local thread 78 that is idle. In this case the signal might have
a binary nature, i.e., the signal has two distinct states, one of
which indicates ability to accept a request and the other
indicating inability to accept a request. In alternative
embodiments, both the conditions and the signaling may be
different, and in particular may be non-binary. While this
may be somewhat more complicated to implement, it may
provide greater efficiency and/or performance. As an
example, a collector 80 might signal the number of idle
threads 78 it currently has, and another collector 80 can
implement a selection from among multiple candidate des-
tinations for a request based on the respective numbers. Thus
a collector 80 having multiple idle threads 78 may be
preferred over a collector 80 having only one idle thread 78.
Similarly, a collector 80 might have a non-binary condition
for routing a request to another core. There could be levels
of urgency for such routing, based for example on the
number of entries in the local queue 102 (more entries
implies greater urgency), and a collector 80 could employ a

20

25

30

40

45

55

8

threshold, which could be dynamically adjustable, to trigger
the routing of requests to another core 50.

FIG. 6 is a high-level flow diagram of operation of an
individual core 50 in the context of the inter-core routing of
requests as described herein. At 110, the core 50 maintains
endpoints of respective connection-layer connections 60 to
the hosts 12 to affine respective streams of network traffic
with the core 50. This function is performed in the stream
network stack 82, specifically by the collection of modules
88, 90 and 92. At 112, the core 50 dynamically and prefer-
entially assigns execution threads 78 of the core 50 to
process file system service requests of the streams affined
with the core 50, i.e., the streams of the local stream network
stacks 82. At 114, the core 50 co-operates with other cores
50 to dynamically and non-preferentially (a) assign execu-
tion threads 78 of the core to process file system service
requests of the streams affined with the other cores 50, and
(b) assign execution threads 78 of the other cores 50 to
process file system service requests of the streams affined
with the core. Steps 112 and 114 are performed primarily by
the collectors 80.

While various embodiments of the invention have been
particularly shown and described, it will be understood by
those skilled in the art that various changes in form and
details may be made therein without departing from the
spirit and scope of the invention as defined by the appended
claims.

What is claimed is:

1. A network attached storage system for providing a
distributed file system service to host computers via a
network, comprising:

network interface circuitry to be coupled to the network;

one or more data storage devices to store file system data;

and

a storage processor coupled to the network interface

circuitry and the data storage devices to perform file
system operations of the distributed file system service
using the data storage devices for underlying data
storage, the file system operations including file read
and file write operations,

the storage processor including a multi-core processing

unit and memory, the multi-core processing unit having

a set of cores for respective independent instruction

execution of instructions stored in the memory, the

instructions including:

(1) first instructions of a distributed file system appli-
cation including respective sets of execution threads
for the cores, each execution thread used to perform
file system operations based on corresponding
requests from the host computers,

(2) second instructions of sets of network stream mod-
ules forming respective stream network stacks, sets
of two or more of the stream network stacks being
executed by respective cores, each stream network
stack including a stream head to and from which the
execution threads read and write stream data corre-
sponding to the requests from and responses to the
host computers via respective distinct host-specific
connection-layer connections, and

(3) third instructions of collector modules executed by
the respective cores, a collector module of each core
being operative on a per-request basis to (a) dynami-
cally and preferentially assign execution threads of
the core to the stream heads of the core to process
first file system requests and responses in stream data
of the respective stream network stacks, and (b)
co-operate with collector modules of the other cores

US 9,485,310 B1

9

to dynamically and non-preferentially assign execu-
tion threads of the other cores to the stream heads of
the core to process second file system requests and
responses in stream data of the respective stream
network stacks to promote efficient use of the cores
in providing the distributed file system service.

2. A network attached storage system according to claim
1, wherein preferentially assigning execution threads of a
core to respective stream heads of the core is performed
when at least one of the execution threads of the core is idle,
and wherein non-preferentially assigning execution threads
of a core to respective stream heads of another core is
performed when all execution threads of the core are busy
and the other core has at least one execution thread that is
idle.

3. A network attached storage system according to claim
1, wherein the collectors maintain respective queues of
requests received from respective stream network stacks,
entries of the queues identifying respective local stream
heads which are to be read from to obtain corresponding file
system service requests received by the respective stream
network stacks, the entries of each queue having execution
threads assigned thereto in sequential order.

4. A network attached storage system according to claim
3, wherein the collectors apply respective thresholds against
the number of entries in the queues to determine when to
direct a next request to another core rather than assigning a
local execution thread to process the request.

5. A network attached storage system according to claim
1, wherein, for a request obtained from the stream head of
a given core being processed by an execution thread of
another core, the execution thread of the other core returns
a corresponding response to the stream head of the given
core, and the stream network stack of the given core returns
the response to the host issuing the request.

6. A network attached storage system according to claim
1, wherein the stream network stacks of a core are operative
to call a function of the collector of the core once well-
formed file system requests are identified in received net-
work traffic, and wherein the function of the collector
responds by (1) adding an entry to a queue of requests, (2)
selecting an execution thread for handling a queued request,
and (3) activating the selected execution thread, and wherein
an activated execution thread (4) obtains a next entry from
the queue which identifies a corresponding stream head, (5)
obtains a well-formed request by performing a read stream
function on the identified stream head, (6) performs file
system processing for the well-formed request, and (7)
returns a corresponding response by performing a write
stream function to the same stream head.

7. A network attached storage system according to claim
1, wherein the execution threads of the cores form respective
pools of execution threads available for processing the
requests, the execution threads transitioning from idle to
in-use upon having stream heads assigned thereto for pro-
cessing respective requests, the execution threads transition
from in-use to idle upon completing the processing for
respective requests including returning respective responses
to the stream heads for delivery to respective host comput-
ers.

8. A method of operating a multi-core processor of a
network attached storage system to process requests from
host computers for services of a file system service, the
method including, at each of a set of cores of the multi-core
processor:

10

15

20

25

30

35

40

45

50

55

60

10

maintaining endpoints of respective connection-layer
connections to the hosts to affine respective streams of
network traffic with the core;

dynamically and preferentially assign execution threads

of the core to process file system service requests of the
streams affined with the core; and

co-operate with other cores of the set of cores to dynami-

cally and non-preferentially (a) assign execution
threads of the core to process file system service
requests of the streams affined with the other cores, and
(b) assign execution threads of the other cores to
process file system service requests of the streams
affined with the core.

9. A method according to claim 8, wherein preferentially
assigning execution threads of a core to respective stream
heads of the core is performed when at least one of the
execution threads of the core is idle, and wherein non-
preferentially assigning execution threads of a core to
respective stream heads of another core is performed when
all execution threads of the core are busy and the other core
has at least one execution thread that is idle.

10. A method according to claim 8, wherein the collectors
maintain respective queues of requests received from
respective stream network stacks, entries of the queues
identifying respective local stream heads which are to be
read from to obtain corresponding file system service
requests received by the respective stream network stacks,
the entries of each queue having execution threads assigned
thereto in sequential order.

11. A method according to claim 10, wherein the collec-
tors apply respective thresholds against the number of
entries in the queues to determine when to direct a next
request to another core rather than assigning a local execu-
tion thread to process the request.

12. A method according to claim 8, wherein, for a request
obtained from the stream head of a given core being pro-
cessed by an execution thread of another core, the execution
thread of the other core returns a corresponding response to
the stream head of the given core, and the stream network
stack of the given core returns the response to the host
issuing the request.

13. A method according to claim 8, wherein the stream
network stacks of a core call a function of the collector of the
core once well-formed file system requests are identified in
received network traffic, and wherein the function of the
collector responds by (1) adding an entry to a queue of
requests, (2) selecting an execution thread for handling a
queued request, and (3) activating the selected execution
thread, and wherein an activated execution thread (4) obtains
a next entry from the queue which identifies a corresponding
stream head, (5) obtains a well-formed request by perform-
ing a read stream function on the identified stream head, (6)
performs file system processing for the well-formed request,
and (7) returns a corresponding response by performing a
write stream function to the same stream head.

14. A method according to claim 8, wherein the execution
threads of the cores form respective pools of execution
threads available for processing the requests, the execution
threads transitioning from idle to in-use upon having stream
heads assigned thereto for processing respective requests,
the execution threads transition from in-use to idle upon
completing the processing for respective requests including
returning respective responses to the stream heads for deliv-
ery to respective host computers.

#* #* #* #* #*

